7 research outputs found

    Electrónica de Potencia

    Get PDF
    Nivel educativo: Grado. Duración (en horas): Más de 50 horasLa Electronica de Potencia es una asignatura de tercer curso, impartida en los grados en Ingenieria Electrónica Industrial y Automatica, y en Ingenieria Electrica, que estudia la conversión electrónica de la energía electrica y sus efectos derivados. Los resultados de aprendizaje para esta asignatura son: conocer las diferentes aplicaciones de la electrónica de potencia; conocer las diferentes aplicaciones de los elementos utilizados en electrotecnia; diseñar y analizar sistemas de electrónica de potencia; capacitar al alumno para simular e implementar sistemas de electrónica de potencia. Por otra parte, y debido a la esencia de los convertidores electrónicos de potencia, es una materia en la que convergen conocimientos de sistemas eléctricos y máquinas electricas, teoría de control, tratamiento analógico y digital de señales, y conocimiento de microprocesadores con periferia especializada. Por todo lo anterior es una materia con un elevado grado de abstración, tanto matemática como técnica, y cierta complejidad por la combinación de materias necesarias para su aprendizaje. La dificultad en la compresión de la materia teórica y, por lo tanto, de su aplicación práctica, sumado al elevado numeros de alumnos, hace de esta asignatura una buena candidata para la aplicación de metodologías activas de enseñanza-apredizaje. En este caso se ha optado por la metodología de aprendizaje basado en proyectos. Los resultados en la mejora de la comprensión de los sistemas electronicos de potencia y su aplicación industrial, la motivación para el estudio de la electrónica de potencia como asignatura de grado y los resultados de los diseños experientales de los estudiantes sobre el proyecto planteado, hacen que esta iniciativa sea un esquema educativo prometedor para los proximos años

    Effective generalized predictive control of induction motor

    Get PDF
    In this document it is presented and experimentally validated a new linear predictive regulator to control the mechanical speed and the rotor flux of induction motor (IM). The regulator is developed in the synchronous reference frame and it provides a very good dynamic performance and guarantees fulfilment with the current constraints, to avoid over currents in stator windings. This predictive controller employs the minimum necessary dynamic model of the motor to get minor computational cost, in which the rotor flux and the load torque are estimated, and in spite of important parametric uncertainties, the performance is excellent. Moreover, the predictive regulator anticipates the response and compensates the mechanical dead time of the speed induction motor drive, getting better results than the classic speed PI control scheme. This control scheme incorporates the space vector pulse width modulation (SVPWM) with two proportional–integral​ (PI) current controllers, where the rest of dynamics of motor (stator) is controlled and voltage constraints are implemented, ensuring that the modulator always works in the linear area, to prevent distortion in the resulting stator currents. From the experimental tests that have been carried out, it can be concluded that the presented controller provides an effective and robust mechanical velocity and rotor flux tracking, from low to high speed range, with a high accuracy.The authors wish to express their gratitude to the Basque Government through the project SMAR3NAK (ELKARTEK KK-2019/00051), to the Diputación Foral de Álava (DFA) through the project CONAVAUTIN 2, to the Gipuzkoako Foru Aldundia (GFA) through the project ETORKIZUNA ERAIKIZ 2019 and the UPV/EHU for supporting this research work

    Flow Control in Wells Turbines For Harnessing Maximum Wave Power

    Get PDF
    Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.This work was supported in part by the University of the Basque Country (UPV/EHU) through Project PPG17/33, by the MINECO through the Research Project DPI2015-70075-R (MINECO/FEDER, EU) and by the Basque Government through Elkartek. The authors would like to thank the collaboration of the Basque Energy Agency (EVE) through Agreement UPV/EHUEVE23/6/2011, the Spanish National Fusion Laboratory (EURATOM-CIEMAT) through Agreement UPV/EHUCIEMAT08/190 and EUSKAMPUS - Campus of International Excellence. They would also like to thank Yago Torre-Enciso and Olatz Ajuria from EVE for their collaboration and help. The authors would also like to thank the anonymous reviewers that have helped to improve the initial version of the manuscript

    Sensors Data Analysis in Supervisory Control and Data Acquisition (SCADA) Systems to Foresee Failures with an Undetermined Origin

    Get PDF
    This paper presents the design and implementation of a supervisory control and data acquisition (SCADA) system for automatic fault detection. The proposed system offers advantages in three areas: the prognostic capacity for preventive and predictive maintenance, improvement in the quality of the machined product and a reduction in breakdown times. The complementary technologies, the Industrial Internet of Things (IIoT) and various machine learning (ML) techniques, are employed with SCADA systems to obtain the objectives. The analysis of different data sources and the replacement of specific digital sensors with analog sensors improve the prognostic capacity for the detection of faults with an undetermined origin. Also presented is an anomaly detection algorithm to foresee failures and to recognize their occurrence even when they do not register as alarms or events. The improvement in machine availability after the implementation of the novel system guarantees the accomplishment of the proposed objectives.This work was supported partially by the Basque Government through project IT1207-19, and by the MCIU/MINECO through RTI2018-094902-B-C21/RTI2018-094902-B-C22 (MCIU/AEI/FEDER, UE). The authors would like to thank Intenance Company for its collaboration and help

    Electrónica de Potencia

    Get PDF
    Nivel educativo: Grado. Duración (en horas): Más de 50 horasLa Electronica de Potencia es una asignatura de tercer curso, impartida en los grados en Ingenieria Electrónica Industrial y Automatica, y en Ingenieria Electrica, que estudia la conversión electrónica de la energía electrica y sus efectos derivados. Los resultados de aprendizaje para esta asignatura son: conocer las diferentes aplicaciones de la electrónica de potencia; conocer las diferentes aplicaciones de los elementos utilizados en electrotecnia; diseñar y analizar sistemas de electrónica de potencia; capacitar al alumno para simular e implementar sistemas de electrónica de potencia. Por otra parte, y debido a la esencia de los convertidores electrónicos de potencia, es una materia en la que convergen conocimientos de sistemas eléctricos y máquinas electricas, teoría de control, tratamiento analógico y digital de señales, y conocimiento de microprocesadores con periferia especializada. Por todo lo anterior es una materia con un elevado grado de abstración, tanto matemática como técnica, y cierta complejidad por la combinación de materias necesarias para su aprendizaje. La dificultad en la compresión de la materia teórica y, por lo tanto, de su aplicación práctica, sumado al elevado numeros de alumnos, hace de esta asignatura una buena candidata para la aplicación de metodologías activas de enseñanza-apredizaje. En este caso se ha optado por la metodología de aprendizaje basado en proyectos. Los resultados en la mejora de la comprensión de los sistemas electronicos de potencia y su aplicación industrial, la motivación para el estudio de la electrónica de potencia como asignatura de grado y los resultados de los diseños experientales de los estudiantes sobre el proyecto planteado, hacen que esta iniciativa sea un esquema educativo prometedor para los proximos años

    Effective Position Control for a Three-Phase Motor

    Get PDF
    This document presents an efficient proportional derivative (PD) position controller for three-phase motor drives. The regulator has been designed in frequency domain, employing the direct–quadrature (d–q) synchronous rotating reference frame and the indirect vector control. The presented position regulator is easy to tune and incorporates a feed forward (FF) term to compensate effectively the effect of the load disturbance. This position controller has been validated experimentally by using two industrial three-phase motors: an induction motor (IM) of 7.5 kW and a permanent magnet synchronous motor (PMSM) of 3.83 kW. The inner proportional integral (PI) current loops of both machines have also been designed in the frequency domain. Each machine has connected in its shaft an incremental encoder of 4096 pulses per revolution, to measure the position. Several simulations and experimental tests have been carried out with both motors, in favorable conditions and also with various types of adversities (parametric uncertainties, unknown load disturbance and measurement noise in the position and current loops), getting very good results and suggesting that this controller could be used in the research area and also in the industry.This research was partially funded by the Basque Government through the project SMAR3NAK (ELKARTEK KK-2019/00051
    corecore